Article ID Journal Published Year Pages File Type
6425016 Advances in Mathematics 2016 33 Pages PDF
Abstract
There are well-known constructions relating ring epimorphisms and tilting modules. The new notion of silting module provides a wider framework for studying this interplay. To every partial silting module we associate a ring epimorphism which we describe explicitly as an idempotent quotient of the endomorphism ring of the Bongartz completion. For hereditary rings, this assignment is used to parametrise homological ring epimorphisms by silting modules. We further show that homological ring epimorphisms of a hereditary ring form a lattice which completes the poset of noncrossing partitions in the case of finite dimensional algebras.
Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, , ,