Article ID Journal Published Year Pages File Type
6425078 Advances in Mathematics 2017 40 Pages PDF
Abstract

We work out properties of smooth projective varieties X over a (not necessarily algebraically closed) field k that admit collections of objects in the bounded derived category of coherent sheaves Db(X) that are either full exceptional, or numerically exceptional of maximal length. Our main result gives a necessary and sufficient condition on the Néron-Severi lattice for a smooth projective surface S with χ(OS)=1 to admit a numerically exceptional collection of maximal length, consisting of line-bundles. As a consequence we determine exactly which complex surfaces with pg=q=0 admit a numerically exceptional collection of maximal length. Another consequence is that a minimal geometrically rational surface with a numerically exceptional collection of maximal length is rational.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
,