Article ID Journal Published Year Pages File Type
642515 Separation and Purification Technology 2011 12 Pages PDF
Abstract

Polyvinyl alcohol (PVOH) was chemically modified by crosslink copolymerization of acrylic acid (AA) and acrylamide (AM) in aqueous solution of PVOH and finally crosslinking the copolymer of AA and AM designated as PAAAM with N,N′-methylenebisacrylamide (NMBA) and PVOH with glutaraldehyde to produce a full interpenetrating network (FIPN) membrane. Accordingly, a membrane containing PVOH:PAAAM of 1:0.5 designated as FIPN500 was synthesized. Filled FIPN membranes were synthesized by in situ incorporation of highly hydrophilic aluminosilicate filler during copolymerization of the monomers in PVOH matrix to produce three filled membranes designated as FIPN502, FIPN505, and FIPN510 containing 2, 5 and 10 mass%, respectively (of total polymer) of the filler. PVOH membrane cosslinked with 2 mass% glutaraldehyde, PAAAM copolymer modified PVOH membrane i.e. FIPN500 and the three filled FIPN membranes were used for sorption and pervaporative dehydration of acetic acid. The filled IPN membranes were found to show higher flux and water selectivity than the unfilled membranes. Among the three filled membranes, FIPN510 was found to show the highest flux (6.612 kg m2 h−1 μm) and water selectivity (325.53) at 0.953 mass% water in feed. Interaction parameters, partial permeability, intrinsic membrane selectivity and concentration average diffusion coefficients for all the membranes were also evaluated.

► Acrylic acid and acrylamide is copolymerized in polyvinyl alcohol to form IPN. ► IPN is filled with aluminosilicate filler to form the filled FIPN membranes. ► Sorption and pervaporative dehydration of acetic acid is studied with these membranes. ► Filled membranes show high flux and water selectivity even at higher temperature. ► Operating parameters and intrinsic properties are studied in details.

Related Topics
Physical Sciences and Engineering Chemical Engineering Filtration and Separation
Authors
, ,