Article ID Journal Published Year Pages File Type
6425209 Advances in Mathematics 2016 73 Pages PDF
Abstract

We show that recollements of module categories give rise to homomorphisms between the associated Hochschild cohomology algebras which preserve the strict Gerstenhaber structure, i.e., the cup product, the graded Lie bracket and the squaring map. We review various long exact sequences in Hochschild cohomology and apply our results in order to realise that the occurring maps preserve the strict Gerstenhaber structure as well. As a byproduct, we generalise a known long exact cohomology sequence of Koenig-Nagase to arbitrary surjective homological epimorphisms. We use our observations to motivate and formulate a variation of the finite generation conjecture by Snashall-Solberg.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
,