Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6425209 | Advances in Mathematics | 2016 | 73 Pages |
Abstract
We show that recollements of module categories give rise to homomorphisms between the associated Hochschild cohomology algebras which preserve the strict Gerstenhaber structure, i.e., the cup product, the graded Lie bracket and the squaring map. We review various long exact sequences in Hochschild cohomology and apply our results in order to realise that the occurring maps preserve the strict Gerstenhaber structure as well. As a byproduct, we generalise a known long exact cohomology sequence of Koenig-Nagase to arbitrary surjective homological epimorphisms. We use our observations to motivate and formulate a variation of the finite generation conjecture by Snashall-Solberg.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)
Authors
Reiner Hermann,