Article ID Journal Published Year Pages File Type
6425817 Advances in Mathematics 2013 18 Pages PDF
Abstract

Let k be any field, G be a finite group acting on the rational function field k(xg:g∈G) by h⋅xg=xhg for any h,g∈G. Define k(G)=k(xg:g∈G)G. Noether's problem asks whether k(G) is rational (= purely transcendental) over k. A weaker notion, retract rationality introduced by Saltman, is also very useful for the study of Noether's problem. We prove that, if G is a Frobenius group with abelian Frobenius kernel, then k(G) is retract k-rational for any field k satisfying some mild conditions. As an application, we show that, for any algebraic number field k, for any Frobenius group G with Frobenius complement isomorphic to SL2(F5), there is a Galois extension field K over k whose Galois group is isomorphic to G, i.e. the inverse Galois problem is valid for the pair (G,k). The same result is true for any non-solvable Frobenius group if k(ζ8) is a cyclic extension of k.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
,