Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6425916 | Advances in Mathematics | 2012 | 17 Pages |
Abstract
We prove that the type A, level 1, conformal blocks divisors on M¯0,n span a finitely generated, full-dimensional subcone of the nef cone. Each such divisor induces a morphism from M¯0,n, and we identify its image as a GIT quotient parameterizing configurations of points supported on a flat limit of Veronese curves. We show how scaling GIT linearizations gives geometric meaning to certain identities among conformal blocks divisor classes. This also gives modular interpretations, in the form of GIT constructions, to the images of the hyperelliptic and cyclic trigonal loci in M¯g under an extended Torelli map.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)
Authors
Noah Giansiracusa, Angela Gibney,