Article ID Journal Published Year Pages File Type
6426029 Advances in Mathematics 2012 13 Pages PDF
Abstract

We prove that a rational linear combination of Chern numbers is an oriented diffeomorphism invariant of smooth complex projective varieties if and only if it is a linear combination of the Euler and Pontryagin numbers. In dimension at least three we prove that only multiples of the top Chern number, which is the Euler characteristic, are invariant under diffeomorphisms that are not necessarily orientation-preserving. These results solve a long-standing problem of Hirzebruch's. We also determine the linear combinations of Chern numbers that can be bounded in terms of Betti numbers.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
,