Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6426045 | Advances in Mathematics | 2011 | 43 Pages |
A W-algebra is an associative algebra constructed from a reductive Lie algebra and its nilpotent element. This paper concentrates on the study of 1-dimensional representations of W-algebras. Under some conditions on a nilpotent element (satisfied by all rigid elements) we obtain a criterium for a finite dimensional module to have dimension 1. It is stated in terms of the Brundan-Goodwin-Kleshchev highest weight theory. This criterium allows to compute highest weights for certain completely prime primitive ideals in universal enveloping algebras. We make an explicit computation in a special case in type E8. Our second principal result is a version of a parabolic induction for W-algebras. In this case, the parabolic induction is an exact functor between the categories of finite dimensional modules for two different W-algebras. The most important feature of the functor is that it preserves dimensions. In particular, it preserves one-dimensional representations. A closely related result was obtained previously by Premet. We also establish some other properties of the parabolic induction functor.