Article ID Journal Published Year Pages File Type
6426080 Advances in Mathematics 2011 18 Pages PDF
Abstract

Busemann's theorem states that the intersection body of an origin-symmetric convex body is also convex. In this paper we provide a version of Busemann's theorem for p-convex bodies. We show that the intersection body of a p-convex body is q-convex for certain q. Furthermore, we discuss the sharpness of the previous result by constructing an appropriate example. This example is also used to show that IK, the intersection body of K, can be much farther away from the Euclidean ball than K. Finally, we extend these theorems to some general measure spaces with log-concave and s-concave measures.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, , ,