Article ID Journal Published Year Pages File Type
6426091 Advances in Mathematics 2011 61 Pages PDF
Abstract

The concept of cluster tilting gives a higher analogue of classical Auslander correspondence between representation-finite algebras and Auslander algebras. The n-Auslander-Reiten translation functor τn plays an important role in the study of n-cluster tilting subcategories. We study the category Mn of preinjective-like modules obtained by applying τn to injective modules repeatedly. We call a finite-dimensional algebra Λ n-complete if Mn=addM for an n-cluster tilting object M. Our main result asserts that the endomorphism algebra EndΛ(M) is (n+1)-complete. This gives an inductive construction of n-complete algebras. For example, any representation-finite hereditary algebra Λ(1) is 1-complete. Hence the Auslander algebra Λ(2) of Λ(1) is 2-complete. Moreover, for any n⩾1, we have an n-complete algebra Λ(n) which has an n-cluster tilting object M(n) such that Λ(n+1)=EndΛ(n)(M(n)). We give the presentation of Λ(n) by a quiver with relations. We apply our results to construct n-cluster tilting subcategories of derived categories of n-complete algebras.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
,