Article ID Journal Published Year Pages File Type
6426278 Aeolian Research 2016 8 Pages PDF
Abstract

•The non-erodible gravels on the gobi surface increases the entrainment threshold.•The measured sediment flux density profile over gobi shows an exponential form.•Aeolian transport over gobi can be predicted by an Owen-type saltation model.•The sediment flux sampling method provides estimates of transport rates in gobi area.

This paper reports on field studies of aeolian sediment transport over a rough surface-gobi atop the Mogao Grottoes, China, in relation to sediment entrainment, saltation mass flux and transport rate prediction. Wind speeds were measured with five cup anemometers at different heights and sediment entrainment and transport measured with horizontal and vertical sediment traps coupled to weighing sensors, where sediment entrainment and transport were measured synchronously with wind speeds. Four sediment transport events, with a measurement duration ranging between 2.5 and 11 h, were studied. The entrainment threshold determined by the horizontal sediment trap varied between 0.28 and 0.33 m s−1, and the effect of non-erodible roughness elements-gravels increased the entrainment threshold approximately by 1.8 times compared to a uniform sand surface. Unlike the non-monotone curve shape of sediment flux density profile over gobi measured in wind tunnels, the flux density profile measured in the field showed an exponential form. Aeolian sediment transport over gobi could be predicted by an Owen-type saltation model: q=Aρ/gu∗(u∗2-u∗t2), where q is sediment transport rate, A is a soil-related dimensionless factor, u∗ is the friction velocity, u∗t is the threshold friction velocity, g is the gravitational acceleration, ρ is the air density. This study indicates that the sediment flux sampling using horizontal and vertical sediment traps coupled to weighing sensors provides a practical method to determine values for A in this model that can provide good estimates of sediment transport rates in gobi areas.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , , , , ,