Article ID Journal Published Year Pages File Type
6426761 Cold Regions Science and Technology 2015 12 Pages PDF
Abstract
Turbulent exchanges under sea ice play a controlling role in ice mass balance, ice drift, biogeochemistry, and mixed layer modification. In this study, we examined the potential to measure under-ice turbulent exchanges of heat, salt, momentum, and dissolved oxygen using eddy covariance in an experimental sea ice facility. Over a 15-day period in January 2013, an underwater eddy covariance system was deployed in a large (500 m3) in-ground concrete pool, which was filled with artificial seawater and exposed to the ambient (− 5 to − 30 °C) atmosphere. Turbulent exchanges were measured continuously as ice grew from 5 to 25 cm thick. Heat, momentum, and dissolved oxygen fluxes were all successfully derived. Quantification of salt fluxes was unsuccessful due to noise in the conductivity sensor, a problem which appears to be resolved in a subsequent version of the instrument. Heat fluxes during initial ice growth were directed upward at 10 to 25 W m− 2. Dissolved oxygen fluxes were directed downward at rates of 5 to 50 mmol m− 2 d− 1 throughout the experiment, at times exceeding the expected amount of oxygen rejected with the brine during ice growth. Bubble formation and dissolution was identified as one possible cause of the high fluxes. Momentum fluxes showed interesting correlations with ice growth and melt but were generally higher than expected. We concluded that with the exception of the conductivity sensor, the eddy covariance system worked well, and that useful information about turbulent exchanges under thin ice can be obtained from an experimental sea ice facility of this size.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
, , , , , , , , , , ,