Article ID Journal Published Year Pages File Type
6426779 Cold Regions Science and Technology 2015 7 Pages PDF
Abstract
Preferential alignment in the physical structure of the sea ice crystal matrix results in anisotropy in the electrical properties of the bulk sea ice. Previous field data and our data demonstrate that both sea ice conductivity and its electrical anisotropy can impede ice thickness profiling using ground penetrating radar (GPR). Preferential attenuation caused by conductive anisotropy can reduce or eliminate ice bottom reflections when the polarization is not optimally aligned. A dual-polarization GPR configuration reliably imaged the sea ice/water interface, even in the presence of well-developed conductivity anisotropy. Additionally, by combining data from both polarizations, the system provides information about the horizontal direction of the ice matrix alignment, which may indicate the direction of dominant current flow underlying sea water.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
, , ,