Article ID Journal Published Year Pages File Type
6427704 Earth and Planetary Science Letters 2016 12 Pages PDF
Abstract
With the new models as input, trajectory-traced estimates of effective vertical cutoff rigidity (RC - the standard method for ordering cosmic ray data) yield significantly different time-integrated scaling predictions when compared to each other and to results using the earlier models. In addition, predictions of each new model using RC are tested empirically using recently published production rate calibration data for both 10Be and 3He, and compared to predictions using corresponding time-varying geocentric dipolar RC formulations and a static geocentric axial dipole (GAD) model. Results for the few calibration sites from geomagnetically sensitive regions suggest that the Pavón-Carrasco et al. (2014) time-varying dipolar model tends to predict sea level, high latitude production rates more in line with those from calibration sites not affected by geomagnetic variations. This suggests that uncertainties arising from hemispheric and temporal sampling biases in the Holocene spherical harmonic models considered here, combined with the currently limited spatial and temporal distribution of production rate calibration sites as empirical tests, limit the robustness of the non-dipole aspects of these models for production rate scaling. These analyses should be revisited as such models improve and additional calibration sites become available.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
,