Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6429146 | Earth and Planetary Science Letters | 2014 | 6 Pages |
â¢An interconnectivity of ferro-periclase in post-spinel rock were examined.â¢The interconnection can be maintained in subducted slab for geological time scale.â¢The viscosity reduction of the slab due to the interconnection is expected.
The electrical conductivity of mantle rocks during phase transformation from ringwoodite to silicate perovskite and ferro-periclase was measured at 25 GPa and various temperatures ranging from 1300 to 1900 K. The electrical conductivity was high at the initial stage of annealing, suggesting that ferro-periclase forms interconnected layers in aggregates of silicate perovskite and ferro-periclase that are representative of lower mantle rock. At 1900 K the electrical conductivity quickly decreased and reached that of silicate perovskite, suggesting the cut-off of the interconnected ferro-periclase because of rounding of crystals. Below 1700 K, the high conductivity values were maintained for experimental duration. The interconnection of ferro-periclase, which has a lower viscosity than silicate perovskite, can be maintained in a cold descending slab over geological time scales (â¼1 My), indicating that a colder slab is less viscous than the warmer mantle surrounding it. The low-viscosity slab can be prevented from penetrating into the deeper part of the lower mantle by the high viscosities encountered at a depth of â¼1000 km, referred to as the “viscosity hill”, that cause stagnation at this depth as observed by seismic tomography.