Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6430185 | Earth and Planetary Science Letters | 2013 | 14 Pages |
â¢The October 28, 2012 Haida Gwaii earthquake involved underthrusting.â¢The slip was located offshore from the Queen Charlotte Fault.â¢Transpression on the plate boundary accounts for the thrusting.â¢Tsunami recordings require shallow slip under a sedimentary terrace.â¢The Queen Charlotte Fault may locally be aseismic or may have large events.
The Pacific/North American plate boundary is undergoing predominantly right-lateral strike-slip motion along the Queen Charlotte and Fairweather transform faults. The Queen Charlotte Fault (QCF) hosted the largest historical earthquake in Canada, the 1949 MS 8.1 strike-slip earthquake, which ruptured from offshore northern Haida Gwaii several hundred kilometers northwestward. On January 5, 2013 an Mw 7.5 strike-slip faulting event occurred near the northern end of the 1949 rupture zone. Along central and southern Haida Gwaii the relative plate motion has â¼20% oblique convergence across the left-stepping plate boundary. There had been uncertainty in how the compressional component of plate motion is accommodated. The October 28, 2012 Mw 7.8 Haida Gwaii earthquake involved slightly (â¼20°) oblique thrust faulting on a shallow (â¼18.5°) northeast-dipping fault plane with strike (â¼320°) parallel to the QCF, consistent with prior inferences of Pacific Plate underthrusting beneath Haida Gwaii. The rupture extended to shallow depth offshore of Moresby Island beneath a 25-30 km wide terrace of sediments that has accumulated in a wedge seaward of the QCF. The shallow thrusting caused seafloor uplift that generated substantial localized tsunami run-up and a modest far-field tsunami that spread across the northern Pacific, prompting a tsunami warning, beach closure, and coastal evacuation in Hawaii, although ultimately tide gauges showed less than 0.8 m of water level increase. The mainshock rupture appears to have spread with a â¼2.3 km/s rupture velocity over a length of â¼150 km, with slip averaging 3.3 m concentrated beneath the sedimentary wedge. The event was followed by a substantial aftershock sequence, in which almost all of the larger events involve distributed intraplate normal faulting extending â¼50 km oceanward from the QCF. The highly oblique slip partitioning in southern Haida Gwaii is distinctive in that the local plate boundary-parallel motion on the QCF may be accommodated either by infrequent large strike-slip ruptures or by aseismic creep, as seems to be the case for deeper oblique relative plate motion beneath Haida Gwaii, while the sedimentary terrace accumulates plate boundary-perpendicular compressional strain that releases in almost pure thrust faulting earthquakes, seaward of the QCF.