Article ID Journal Published Year Pages File Type
6430354 Earth and Planetary Science Letters 2013 11 Pages PDF
Abstract

We have undertaken mineralogical, petrographical and Rb-Sr isotopic studies on alkali-rich igneous rock fragments in the Yamato (Y)-74442 LL-chondritic breccia. The fragments are a few mm in size and are composed mainly of porphyritic olivine and dendritic pyroxene set in alkali-rich groundmass glass. Minor phases include chromite, troilite and metallic nickel-iron. Bulk chemical compositions of the fragments are almost identical to the host chondrite except for a depletion of sodium and an enrichment of potassium. Isotopic analyses of nine fragments from Y-74442 yield a Rb-Sr age of 4429±54 Ma (2σ) for λ(87Rb)=0.01402 Ga−1 with an initial ratio of 87Sr/86Sr=0.7144±0.0094 (2σ). Assuming precursors of the fragments formed 4568 Ma with 87Sr/86Sr=0.69889 when the Solar System formed, a time-averaged Rb/Sr (weight) ratio of the source material for the fragments is calculated to be 2.58+0.91/−0.93.The extremely high Rb/Sr value of this source is difficult to interpret by any igneous fractionation or liquid immiscibility, but can be explained by mixing of a chondritic component with an alkali-rich component formed in the early solar nebula. In our preferred model, the alkali component with Rb/Sr⪢30 would have condensed from the residual nebular gas after removal of refractory strontium and must have been isolated for a long time in a region where the temperature was sufficiently low to prevent reaction with other silicates/oxides. A mixture of the alkali component (early nebular condensates) and the ferromagnesian component could reflect flash heating induced by impact on an LL-chondritic parent body at least 4429 Ma ago, and further enrichments of rubidium and potassium relative to strontium could have occurred during this event. The resulting impact-melt rocks could have been fragmented by later impact event(s) and finally incorporated into the Y-74442 parent body. Thus, a remarkable signature of alkali enrichments both in the early solar nebula and later on the LL-chondrite parent body is preserved as a minor component of some chondritic breccias such as Y-74442.

► We have undertaken Rb-Sr isotopic studies on alkali-rich fragments of Yamato-74442. ► They yield a Rb-Sr age of 4429±54 Ma with an initial 87Sr/86Sr=0.7144±0.0094. ► A time-averaged Rb/Sr of the source for the fragments is calculated to be 2.58. ► This source can be explained by mixing with an alkali-rich component (Rb/Sr⪢30). ► This component would have condensed from the residual nebular gas after removal of Sr.

Keywords
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
, , , , , , , ,