Article ID Journal Published Year Pages File Type
6430734 Earth and Planetary Science Letters 2011 10 Pages PDF
Abstract

Recent results (Wicks et al., 2010) suggest that a mixture of iron-enriched (Mg,Fe)O and ambient mantle is consistent with wavespeed reductions and density increases inferred for ultralow-velocity zones (ULVZs). We explore this hypothesis by simulating convection to deduce the stability and morphology of such chemically-distinct structures. The buoyancy number, or chemical density anomaly, largely dictates ULVZ shape, and the prescribed initial thickness (proxy for volume) of the chemically-distinct layer controls its size. We synthesize our dynamic results with a Voigt-Reuss-Hill mixing model to provide insight into the inherent seismic tradeoff between ULVZ thickness and wavespeed reduction. Seismic data are compatible with a solid-state origin for ULVZs, and a suite of these structures may scatter seismic energy to produce broadband PKP precursors.

Research Highlights►Seismic data are compatible with a solid-state origin for ULVZs. ►Suite of these structures may be the scattering origin of PKP precursors. ►Chemical density anomaly dictates ULVZ morphology.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
, , , ,