Article ID Journal Published Year Pages File Type
6431528 Polar Science 2016 11 Pages PDF
Abstract

The goal of the present study is to develop, generate, and integrate into operational practice a new model of ice growth. The development of this Sea Ice Growth Model for Arctic (SIGMA), a description of the theoretical foundation, the model advantages and analysis of its results are considered in the paper.The enhanced model includes two principal modifications. Surface temperature of snow on ice is defined as internal model parameter maintaining rigorous consistency between processes of atmosphere-ice thermodynamic interaction and ice growth. The snow depth on ice is naturally defined as a function of a local snowfall rate and linearly depends on time rather than ice thickness.The model was initially outlined in the Visible Infrared Radiometer Suite (VIIRS) Sea Ice Characterization Algorithm Theoretical Basis Document (Appel et al., 2005) that included two different approaches to retrieve sea ice age: reflectance analysis for daytime and derivation of ice thickness using energy balance for nighttime. Only the latter method is considered in this paper.The improved account for the influence of surface temperature and snow depth increases the reliability of ice thickness calculations and is used to develop an analytical Snow Depth/Ice Thickness Look up table suitable to the VIIRS observations as well as to other instruments.The applicability of SIGMA to retrieve ice thickness from the VIIRS satellite observations and the comparison of its results with the One-dimensional Thermodynamic Ice Model (OTIM) are also considered. The comparison of the two models demonstrating the difference between their assessments of heat fluxes and radical distinction between the influences of snow depth uncertainty on errors of ice thickness calculations is of great significance to further improve the retrieval of ice thickness from satellite observations.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
,