Article ID Journal Published Year Pages File Type
6432254 Geomorphology 2015 11 Pages PDF
Abstract

•Plant-induced changes in soil hydrology•Smectite genesis in Brunisols/Inceptisols•Role of the fern, Adiantum pedantum, in clay mineral genesis•Bioclimatic factors in soil morphogenesis

Holocene soils in drainage basins of South-Central Ontario, Canada, are generally Fluvisols (Entisols) in floodplains transitioning to Brunisols (Inceptisols), Luvisols (Alfisols) and Podzols (Spodosols) in older terraces and in the glaciated tableland. A single landslide sourced from the highest fluvial terrace in the Rouge basin, with a rubble drop of ~ 12 m emplaced a lobe-shaped mass of reworked stream gravel, glaciolacustrine sediment and till, emplaced approximately 6 m above mean water level at a height roughly equivalent to previously dated mid-Holocene terraces and soils. Clay mineralogy of the soil formed in this transported regolith produced the usual semi-detrital/pedogenic distribution of 1:1 (Si:Al = 1:1), 2:1 and 2:1:1 clay minerals as well as primary minerals consisting of plagioclase feldspar, quartz, mica and calcite. Unexpectedly, the presence of moderate amounts of Ca-smectite in the Bk and Ck horizons, relative to a clay-mineral depleted parent material (Cuk), argues for a soil hydrological change affecting the wetting depth in the deposit. The presence of the uncommon 'maidenhair fern' (Adiantum pedantum) in the mass wasted deposit, a plant capable of high evapotranspiration, is interpreted as producing a bioclimatic disruption limiting soil water penetration to near root depth (wetting depth), thus producing a clay mineral anomaly.

Keywords
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
,