Article ID Journal Published Year Pages File Type
6432983 Geomorphology 2011 14 Pages PDF
Abstract

Within Great Britain five main types of karstic rocks - dolomite, limestone, chalk, gypsum and salt - are present. Each presents a different type and severity of karstic geohazard which are related to the rock solubility and geological setting. Typical karstic features associated with these rocks have been databased by the British Geological Survey (BGS) with records of sinkholes, cave entrances, stream sinks, resurgences and building damage; data for more than half of the country has been gathered. BGS has manipulated digital map data, for bedrock and superficial deposits, with digital elevation slope models, superficial deposit thickness models, the karst data and expertly interpreted areas, to generate a derived dataset assessing the likelihood of subsidence due to karst collapse. This dataset is informed and verified by the karst database and marketed as part of the BGS GeoSure suite. It is currently used by environmental regulators, the insurance and construction industries, and the BGS semi-automated enquiry system. The database and derived datasets can be further combined and manipulated using GIS to provide other datasets that deal with specific problems. Sustainable drainage systems, some of which use soak-aways into the ground, are being encouraged in Great Britain, but in karst areas they can cause ground stability problems. Similarly, open loop ground source heat or cooling pump systems may induce subsidence if installed in certain types of karstic environments such as in chalk with overlying sand deposits. Groundwater abstraction also has the potential to trigger subsidence in karst areas. GIS manipulation of the karst information is allowing Great Britain to be zoned into areas suitable, or unsuitable, for such uses; it has the potential to become part of a suite of planning management tools for local and National Government to assess the long term sustainable use of the ground.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , ,