Article ID Journal Published Year Pages File Type
6433444 Tectonophysics 2016 16 Pages PDF
Abstract

Buckle folds of sedimentary strata commonly feature a variety of different fracture sets. Some fracture sets including outer arc tensile fractures and inner arc shear fractures at the fold hinge zones are well understood by the extensional and compressional strain/stress pattern. However, other commonly observed fracture sets, including tensile fractures parallel to the fold axis, tensile fractures cutting through the limb, extensional faults at the fold hinge, and other shear fractures of various orientations in the fold limb, fail to be intuitively explained by the strain/stress regimes during the buckling process. To obtain a better understanding of the conditions for the initiation of the various fractures sets associated with single-layer cylindrical buckle folds, a 3D finite element modeling approach using a Maxwell visco-elastic rheology is utilized. The influences of three model parameters with significant influence on fracture initiation are considered: burial depth, viscosity, and permeability. It is concluded that these parameters are critical for the initiation of major fracture sets at the hinge zone with varying degrees. The numerical simulation results further show that the buckling process fails to explain most of the fracture sets occurring in the limb unless the process of erosional unloading as a post-fold phenomenon is considered. For fracture sets that only develop under unrealistic boundary conditions, the results demonstrate that their development is realistic for a perclinal fold geometry. In summary, a more thorough understanding of fractures sets associated with buckle folds is obtained based on the simulation of in-situ stress conditions during the structural development of buckle folds.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , ,