Article ID Journal Published Year Pages File Type
6436066 Chemical Geology 2016 9 Pages PDF
Abstract

•Aqueous Au/Pt-complex stability, biotoxicity, biomineralization and environmental mobility are linked.•Toxicity of Au- vs. Pt-complexes a key factor for nano-particle biomineralization.•Metabolic state of cells a key factor for Au nano-particle biomineralization.•Different biogenic Au/Pt turnover results in different environmental mobility.

The β-Proteobacterium Cupriavidus metallidurans CH34, which dominates biofilm communities on natural gold (Au) grains, is a key species involved in their (trans)formation. Gold(III)-chloride complexes, with toxicity levels similar to those of Hg- and Ag-ions, are rapidly sorbed by C. metallidurans cells and detoxified by active reductive precipitation to metallic Au nanoparticles. In this study, we exposed C. metallidurans CH34 to a range of environmentally-relevant Au(I)- and Pt(II/IV)-complexes with differing toxicity levels, i.e., Au(I)-thiosulfate > Au(I)-cyanide, and cisplatin > Pt(IV)-chloride > Pt(II)-cyanide. The aim was to investigate how Au/Pt-complex toxicity, in combination with the metabolic state of cells, affects Au/Pt accumulation, speciation and biomineralization. Overall, more Au(I)- than Pt-complexes were accumulated. Significantly more Au(I)-thiosulfate was taken up by metabolically active vs. inactive or dead cells. Toxicity of Au(I)-complexes was 'managed' via the formation of intermediate species, e.g., Au(I)-C mixed ligand complexes. Over time Au(I) associated with active cells was reduced to metallic particles, with higher rates of transformation being observed in experiments amended with Au(I)-thiosulfate- compared to Au(I)-cyanide complexes. In contrast, Pt uptake did not differ with respect to metabolic state. Pt(IV)-complexes were reduced to Pt(II) within 1 min of amendment; further reduction of the Pt(II) was not observed. In conclusion, toxicity of Au/Pt-complexes is linked to the ability of cells to take up and actively detoxify the complexes. Gold uptake was linked to the detoxification of the Au(I)-complexes via active reductive precipitation to Au(0). In contrast, metabolic activity/toxicity did not influence Pt accumulation and/or transformation. This indicates that the ability of bacteria to cycle Au via mobilization, accumulation and biomineralization provides a selective advantage for organisms able to detoxify highly mobile Au-complexes. Because Pt-complexes are not taken up as readily and are hence less toxic, they do not provide a similar selective advantage, and hence Pt is less readily cycled. This may explain the substantially higher environmental mobility of Au compared to Pt.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , , , ,