Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6437927 | Geochimica et Cosmochimica Acta | 2015 | 19 Pages |
Abstract
Biotite dissolution rates were determined at 25 °C, at pH 2-6, and as a function of mineral composition, grain size, and aqueous organic ligand concentration. Rates were measured using both open- and closed-system reactors in fluids of constant ionic strength. Element release was non-stoichiometric and followed the general trend of Fe, Mg > Al > Si. Biotite surface area normalised dissolution rates (ri) in the acidic range, generated from Si release, are consistent with the empirical rate law:ri=kH,iaH+xiwhere kH,i refers to an apparent rate constant, aH+ designates the activity of protons, and xi stands for a reaction order with respect to protons. Rate constants range from 2.15 Ã 10â10 to 30.6 Ã 10â10 (molesbiotite mâ2 sâ1) with reaction orders ranging from 0.31 to 0.58. At near-neutral pH in the closed-system experiments, the release of Al was stoichiometric compared to Si, but Fe was preferentially retained in the solid phase, possibly as a secondary phase. Biotite dissolution was highly spatially anisotropic with its edges being â¼120 times more reactive than its basal planes. Low organic ligand concentrations slightly enhanced biotite dissolution rates. These measured rates illuminate mineral-fluid-organism chemical interactions, which occur in the natural environment, and how organic exudates enhance nutrient mobilisation for microorganism acquisition.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geochemistry and Petrology
Authors
Andrew W. Bray, Eric H. Oelkers, Steeve Bonneville, Domenik Wolff-Boenisch, Nicola J. Potts, Gary Fones, Liane G. Benning,