Article ID Journal Published Year Pages File Type
6438280 Geochimica et Cosmochimica Acta 2014 14 Pages PDF
Abstract
This study investigates the effects of Coulombic interactions during transport of electrolytes in heterogeneous porous media under steady-state flow and transport conditions. We performed flow-through experiments in a quasi two-dimensional setup using dilute solutions of strong 1:1 and 1:2 electrolytes to study the influence of electrochemical cross-coupling on mass transfer of charged species in saturated porous media. The experiments were carried out under advection-dominated conditions (seepage velocity: 1 and 1.5 m/day) in two well-defined heterogeneous domains where flow diverging around a low-permeability inclusion and flow focusing in high-permeability zones occurred. To quantitatively interpret the outcomes of our laboratory experiments in the spatially variable flow fields we developed a two-dimensional numerical model based on a multicomponent formulation and on charge conservation. The results of the multicomponent transport simulations were compared with the high-resolution concentration measurements of the ionic species at the outlet of the flow-through domain. The excellent agreement between the measured concentrations and the results of purely forward numerical simulations demonstrates the capability of the proposed two-dimensional multicomponent approach to describe transport of charged species and to accurately capture the Coulombic interactions between the ions, which are clearly observed in the flow-through experiments. Furthermore, the model allowed us to directly quantify and visualize the ionic interactions by mapping the Coulombic cross-coupling between the dispersive fluxes of the charged species in the heterogeneous domains.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , ,