Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6438446 | Geochimica et Cosmochimica Acta | 2014 | 37 Pages |
Abstract
The dearth of both major and minor element analyses of anhydrous silicate phases in chondrite matrix has thus far hindered their comparison to the Wild 2 samples. We present 68 analyses of olivine (Fa0-97) in the coarse-grained terminal particles of Stardust aerogel tracks and a comprehensive dataset (>103 analyses) of analogous olivine grains (5-30 μm) isolated in CI, CM, CR, CH, CO, CV3-oxidized, CV3-reduced, C3-ungrouped (Acfer 094 and Ningqiang), L/LL 3.0-4, EH3, and Kakangari chondrite matrix. These compositions reveal that Wild 2 likely accreted a diverse assortment of material that was radially transported from various carbonaceous and ordinary chondrite-forming regions. The Wild 2 olivine includes amoeboid olivine aggregates (AOAs), refractory forsterite, type I and type II chondrule fragments and/or microchondrules, and rare relict grain compositions. In addition, we have identified one terminal particle that has no known compositional analog in the meteorite record and may be a signature of low-temperature, aqueous processing in the Kuiper Belt. The generally low Cr content of FeO-rich olivine in the Stardust samples indicates that they underwent mild thermal metamorphism, akin to a petrologic grade of 3.05-3.15.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geochemistry and Petrology
Authors
David R. Frank, Michael E. Zolensky, Loan Le,