Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6438519 | Geochimica et Cosmochimica Acta | 2014 | 59 Pages |
Abstract
Three Mn oxide pebbles contained in the alluvial deposits overlying the saprolite-dominated weathering profiles at the two highest sites provided additional information on the timing of weathering. Four grains from two pebbles yield plateau ages of 6.32 ± 0.19 to 5.27 ± 0.10 Ma, whereas the other two grains from the third pebble indicate the minimum formation ages of 8.2 ± 0.4 and 9.3 ± 0.3 Ma. These ages confirm the existence of older weathering profiles, now dismantled, in the region. Manganese oxide 40Ar/39Ar ages of the Baye deposit, when combined with results from other localities, indicate that lateritic weathering and supergene Mn enrichment and, by inference, warm and humid climates conducive to intense weathering have prevailed over the Plateau since the middle to late Miocene. The climatic conditions inferred from the weathering geochronology are consistent with multiple independent marine and terrestrial sedimentary and paleontological records, confirming that supergene Mn oxides can be used as a useful proxy for past climate. Age clusters of Mn oxides at 2.9-2.4, 1.2-0.8, and 0.6-0.4 Ma are broadly coincident with and thus likely reflect intensification events of the Indian Summer Monsoon that brings moisture and abundant precipitation to the Yunnan Plateau. These clusters also coincide with the periods of significant surface uplift in the Yunnan Plateau, demonstrating a causal link between topographic evolution, plateau uplift, and intensification of the monsoonal climate.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geochemistry and Petrology
Authors
Xiao-Dong Deng, Jian-Wei Li, Paulo M. Vasconcelos, Benjamin E. Cohen, Timothy M. Kusky,