Article ID Journal Published Year Pages File Type
6438736 Geochimica et Cosmochimica Acta 2014 21 Pages PDF
Abstract
Δ33S and Δ36S yield homogenous values within error of Canyon Diablo Troilite (CDT), whereas δ34S are variable, ranging between −1.57 ± 0.11‰ and +0.60 ± 0.10‰ with a mean value of −0.64 ± 0.40‰ (1σ, versus V-CDT). The geographic distribution of δ34S follows a spike-like pattern, with local 34S-enrichments by up to +1.30‰ compared to a low-δ34S baseline. As hydrothermal massive sulfides are characterized by relative 34S-enrichments, such first-order variability can be accounted for by hydrothermal sulfide assimilation, a process that would occur for a subset of samples (n = 10). Excluding these particular samples, the mean δ34S is significantly less variable, averaging at −0.89 ± 0.11‰ (1σ, n = 28), a value that we suggest to be representative of the average MORB source value for Pacific-Antarctic basalts. Weak trends between δ34S and 206Pb/204Pb are displayed by such uncontaminated samples suggesting the recycled oceanic crust to have a modest impact on the S budget of the mantle. Their positive signs, however, suggest the depleted mantle to have a δ34S of −1.40 ± 0.50‰. The sub-chondritic 34S/32S value that was previously observed for the South-Atlantic mantle is here extended to the Pacific-Antarctic domain. Such a feature cannot originate from oceanic crust recycling and substantiates the concept of a core-mantle fractionation relict.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , ,