Article ID Journal Published Year Pages File Type
6438737 Geochimica et Cosmochimica Acta 2014 29 Pages PDF
Abstract
The oldest compiled U-Pb zircon ages for the Acasta Gneiss Complex in the Northwest Territories of Canada span about 4050-3850 Ma; yet older ca. 4200 Ma xenocrystic U-Pb zircon ages have also been reported for this terrane. The AGC expresses at least 25 km2 of outcrop exposure, but only a small subset of this has been documented in the detail required to investigate a complex history and resolve disputes over emplacement ages. To better understand this history, we combined new ion microprobe 235,238U-207,206Pb zircon geochronology with whole-rock and zircon rare earth element compositions ([REE]zirc), Ti-in-zircon thermometry (Tixln) and 147Sm-143Nd geochronology for an individual subdivided ∼60 cm2 slab of Acasta banded gneiss comprising five separate lithologic components. Results were compared to other variably deformed granitoid-gneisses and plagioclase-hornblende rocks from elsewhere in the AGC. We show that different gneissic components carry distinct [Th/U]zirc vs. Tixln and [REE]zirc signatures correlative with different zircon U-Pb age populations and WR compositions, but not with 147Sm-143Nd isotope systematics. Modeled DWRzircon [REE] from lattice-strain theory reconciles only the ca. 3920 Ma zircons with the oldest component that also preserves strong positive Eu∗ anomalies. Magmas which gave rise to the somewhat older (inherited) ca. 4020 Ma AGC zircon age population formed at ∼IW (iron-wüstite) to
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , , , , , ,