Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6438850 | Geochimica et Cosmochimica Acta | 2013 | 13 Pages |
Abstract
The structure of glasses along the MgSiO3-CaSiO3 join has been investigated by X-ray and neutron diffraction measurements. Structure models were constructed by fitting the experimental data using the Reverse Monte Carlo method (RMC). The structural data indicate a random mixing between MgSiO3 and CaSiO3 glasses, in accordance with their melt properties. Though important disordering is observed, the structure evolves continuously along the join. The Ca environment is essentially similar for all compositions, with an average of 6 to 7-coordinated sites. The Mg environment tends to have higher coordinated sites as the MgO content decreases. There is a continuous mixing of Ca-Mg pairs with a non-random distribution emphasized by the distinct cation-cation distances. Changes were observed in the topology of the silicate network. The proportion of non-bridging oxygens decreases, the number of free-oxygens increases and the ring size distribution is shifted to high-membered rings in the Mg-rich glasses. These structural investigations indicate important differences with the crystalline pyroxene structures.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geochemistry and Petrology
Authors
L. Cormier, G.J. Cuello,