Article ID Journal Published Year Pages File Type
6438950 Geochimica et Cosmochimica Acta 2013 17 Pages PDF
Abstract
Microbial community composition in anode biofilms and surrounding sediments was assessed via high-throughput 16S rRNA gene sequencing, and these analyses revealed that the elevated and oscillatory redox treatments led to the enrichment of Deltaproteobacteria on the sediment-hosted anodes over time. Many Deltaproteobacteria are capable of using electrodes as terminal electron acceptors to completely oxidize organic substrates. Notably, Deltaproteobacteria were not measurably enriched in the sediments adjacent to anodes, suggesting that - in these experiments - electron-shuttling bacterial networks did not radiate out away from the electrodes, affecting millimeters or centimeters of sediment. Rather, microbial phylotypes allied to the Clostridia appeared to dominate in the sediment amongst all treatments, and likely played essential roles in converting complex dissolved and particulate sources of OM to simple fermentation products. Thus, we advance that the rate at which fermentation products are generated and migrate to oxidation fronts is what limits the remineralization of OM in many subsurface sediments removed from molecular oxygen. This is a diagenetic scenario that is consistent with the discharging behavior of redox oscillating sediment MFCs. It is also compatible with hypotheses that molecular O2 - and not just the resulting elevated redox potential - may be required to effectively catalyze the degradation of refractory OM. Such decomposition reactions have been suggested to depend on substrate interactions with highly reactive oxygen-containing radicals and/or with specialized extracellular enzymes produced by aerobic prokaryotic or eukaryotic cells.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , , , ,