Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6439152 | Geochimica et Cosmochimica Acta | 2013 | 28 Pages |
Abstract
New Sm-Nd and Lu-Hf isotopic data allow precise determination of initial ε143Nd = +0.46 ± 0.10 and +0.50 ± 0.11 and initial ε176Hf = +1.9 ± 0.3 and +4.7 ± 0.8 for the Komati and the Weltevreden system komatiites, respectively. These positive initial values reflect prior fractionation of Sm/Nd and Lu/Hf in the mantle early in Earth history. Conversely, μ142Nd values are 0.0 ± 2.4 and +2.2 ± 4.1 for the Komati and the Weltevreden systems, respectively. These values overlap, within uncertainties, those of modern terrestrial rocks, thus, limiting the magnitudes of possible Sm/Nd fractionations generated by early Earth processes in the sources of these rocks. Combined 142,143Nd and Hf isotope and lithophile trace element systematics are consistent with formation and long-term isolation of deep-seated mantle domains with fractionated Sm/Nd and Lu/Hf at ca. 4400 Ma. These domains were likely generated as a result of crystallization of a primordial magma ocean, with Mg-perovskite and minor Ca-perovskite acting as fractionating phases. The inferred mantle domains were evidently mixed away by 2.7 Ga on the scale of mantle reservoirs sampled by late Archean komatiite lavas emplaced worldwide.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geochemistry and Petrology
Authors
I.S. Puchtel, J. Blichert-Toft, M. Touboul, R.J. Walker, G.R. Byerly, E.G. Nisbet, C.R. Anhaeusser,