Article ID Journal Published Year Pages File Type
6439266 Geochimica et Cosmochimica Acta 2012 20 Pages PDF
Abstract
Siderophile element concentrations were measured by LA-ICP-MS in metals and sulfides from five aubrite meteorites. Siderophile element patterns in aubrites are either similar to those in metal from enstatite chondrites, or can be derived by crystallization from metallic liquids derived by partial melting of E chondrites. Some metal grains in Mt. Egerton, Cumberland Falls, and Aubres show moderate to severe depletion in compatible highly siderophile elements (Re, Os, Ir, Ru) which are consistent with solid metal/liquid metal differentiation of enstatite chondrite-like metal. Metals from chondrite inclusions in Cumberland Falls show more extremely fractionated patterns than those from the aubritic matrix, potentially hinting at fractionation and partial melting processes affecting not only the aubrite parent body, but the chondrite body from which the inclusions were derived as well. Models using experimental partition coefficients show that aubrite metal chemically corresponds to solid metal segregated during differentiation of primary metallic liquids of EH/EL composition that contained both substantial S- and C-contents. This result is consistent with a genetic link between enstatite chondrites and aubrites, but as to whether aubrites were derived from the same body(ies) as enstatite chondrites, or have their origin in multiple, and potentially separated bodies, cannot be answered unequivocally with chemical or isotopic data alone.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , ,