Article ID Journal Published Year Pages File Type
6440649 Lithos 2015 79 Pages PDF
Abstract
The mantle composition array as a whole is characterized by variable degrees of depletion of Pt, Pd and Rh in Al-poor, melt-depleted harzburgite/dunite lithologies; lack of depletion in these elements in Al-bearing lherzolites; and a lack of systematic variation in IPGEs across this range. Strongest correlations across the entire set are observed between Ir, Ru and Os; and between Pt and Rh. Melt-depleted cratonic mantle samples are notably more deficient in Pd than in Pt, but comparable Pd-enriched components are not represented in the available data from continental environments. The only group of mantle melts that systematically record high Pd/Pt ratios are MORBs; if these are indeed the complement of the depleted cratonic mantle suite then the melt depletion recorded by the cratonic mantle suite occurred at low pressure prior to tectonic underplating of the depleted lithosphere beneath the cratons. A filtered subset of orogenic peridotite compositions that are thought not to have been affected by significant extents of melt extraction or metasomatic refertilization have median concentrations of 3.9 ppb Os, 2.9 ppb Ir, 6.3 ppb Ru, 1.0 ppb Rh, 6.2 ppb Pt, 5.4 ppb Pd, and Cu/Pd ratio of 5500, which we consider to be representative of the modern convecting mantle. The convecting mantle has PGE proportions closely resembling those of lunar impact breccias, diverging considerably from chondritic proportions and attributable to the presence of a late veneer-derived, predominantly sulfide-hosted component. The compositions of mantle peridotites show considerable scatter attributable to the combined effects of measurement error and a strong covariance due to a heterogeneous distribution of sulfide in the small samples typically chosen for pulverization. The intensity of the covariance between all of the PGE due to sampling error gives a false impression of a genetic trend toward highly enriched PGE in some samples which could be mistaken for the effects of metasomatism; however no plausible metasomatic process would be expected to retain the tight interelement correlations shown.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , ,