Article ID Journal Published Year Pages File Type
6440802 Lithos 2014 47 Pages PDF
Abstract
The Bibi-Maryam pluton crops out in the Sistan suture zone, eastern Iran. This pluton is a 1.5 × 2 km stock composed of leucocratic tonalite, granodiorite and granite. U-Pb zircon geochronology of a leucogranite indicates an emplacement age of 58.6 ± 2.1 Ma (95% confidence). The Bibi-Maryam rock suite is sodic with elevated Na2O/K2O (2.9 to 5.5), Sr/Y (15.6-62.2), La/Yb (13.3-22.2), and low MgO (0.86-1.81) abundances. It lacks significant Eu anomalies. Because of these geochemical characteristics, Bibi-Maryam rocks are similar to high-SiO2 adakites. Trace element modeling indicates that the Bibi-Maryam adakitic rocks could be produced by 5-8% non-modal batch partial melting from a source with composition of 95% N-MORB + 5% sediment in the presence of 35-40% amphibole + 5-10% garnet + 55-60% clinopyroxene + 1% apatite + 1% rutile. This source mineralogy is similar to hornblende eclogite or garnet amphibolites. Collectively, these data provide new constraints for the evolution of the Sistan suture zone and suggest that the Bibi-Maryam pluton formed via slab melting in an oceanic arc and pre-plate collision tectonic setting. This implies that the closure of the Sistan Ocean and Lut-Afghan continental blocks collision happened after the Bibi-Maryam emplacement at 58.6 ± 2.1 Ma.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , ,