Article ID Journal Published Year Pages File Type
6442570 Quaternary Geochronology 2015 7 Pages PDF
Abstract
After the assessment of the applicability of OSL to these samples, it could be noted that despite of an expected low OSL sensitivity of the quartz from the South American Cordillera, most of the sampled quartz yielded a detectable natural signal. After performance tests according to the SAR-protocol, the measurements of the different tsunami sand layers were conducted with small (2.5 mm) aliquots of quartz with the preheat temperature 180 °C. The calculation of De was provided by applying both the central age and minimum age models. All samples are heterogeneous in their De distributions due to incomplete or absent significant bleaching during transport by tsunami. The resulting ages of the tsunami sediments yield an offset of nearly 200 years for CAM ages and less than 50 years for MAM ages, consequently favouring MAM ages for true burial age determination. In some tsunami sand layers and their surrounding river marsh sediments age inversions occur. They were caused by the initial deposition of well bleached sediments derived from beach and dunes followed by older sediments redeposited from beach and intertidal environments during tsunami flow. Despite the offset and age inversion six different tsunami events were dated in the Tirúa profile. Three of these events extend the historical record to pre-Columbian time with the oldest tsunami dated to over 1500 years before present.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , ,