Article ID Journal Published Year Pages File Type
6442847 Earth-Science Reviews 2016 96 Pages PDF
Abstract
Here we identify U-OM bond values that are in agreement, relatively strong, independent from ionic strength and which may facilitate either U mobilisation or immobilisation, depending on environmental conditions. We also examine knowledge gaps in the literature, with U-OM solubility data generally lacking in comparison to data for U sorption and dissolution, and little information available on multi-component relationships, such as U-OM-V (V as vanadate). Furthermore, the capability of OM to influence the oxidation state of U at near surface conditions remains unclear, as it can be postulated that electron shuttling by OM may contribute to changes in U redox state otherwise mediated by bacteria. Geochemical modelling of the environmental mobility of U will require incorporation of data from multi-corporation studies, as well as from studies of U-OM microbial interactions, all of which are considered in this review.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , , ,