Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6443987 | Journal of Asian Earth Sciences | 2016 | 11 Pages |
Abstract
This paper presents new biostratigraphic and geochemical data from the Biluo Co section in northern Tibet, which exposes Jurassic black organic-rich shales, locally containing abundant coccoliths. Because of a general lack of macrofossils, the stratigraphic ages have been a matter of debate. However, coccoliths suggest an Early Bajocian through Bathonian to possibly Early Callovian age (Middle Jurassic) for the middle-upper part of the section. In this study, a range of trace-metal paleoredox proxies is used to assess how seawater oxygen levels varied both locally and globally during the deposition of these shales. The redox-sensitive elements V, Cr, U, Ni, Cu, Mo, Co, Cd and Zn exhibit relatively high concentrations and element/Al ratios. In particular, the Ni compositions fluctuate between â¼75Â ppm and â¼106Â ppm and Mo between â¼1Â ppm and â¼7Â ppm: values that are higher than those of the post-Archean Average Shale. Palaeoproductivity proxies, such as Zn, P and Cd, which can be fixed in elevated concentrations in sediments deposited under generally reducing conditions, are also relatively enriched. Furthermore, the U-Mo concentrations and Enrichment Factors (EFs) are consistent with deposition under predominantly suboxic to weakly anoxic conditions. Scattered bivalves, however, point to at least intermittent oxic conditions on the sea floor. Based on the redox-sensitive trace-element concentrations, together with ratios (V/(VÂ +Â Ni), Ni/Co and V/Cr), the formation of the Biluo Co black shales, in Tibet was probably caused by increased productivity and organic-matter flux, leading to enhanced preservation of organic material under low-oxygen conditions.
Keywords
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geology
Authors
Lan Chen, Hugh C. Jenkyns, Guiwen Xu, Emanuela Mattioli, Xuejuan Da, Haisheng Yi, Minquan Xia, Zhangxiong Zhu, Zhaohui Huang,