Article ID Journal Published Year Pages File Type
6444498 Journal of Asian Earth Sciences 2013 11 Pages PDF
Abstract
The kinematic rupture process of the 2011 Tohoku-Oki earthquake (Mw 9.0) was derived given apparent source time functions (ASTFs) retrieved from Rayleigh waves using a refined homomorphic deconvolution method. The total duration of the rupture process was about 165 s. Three slip-concentrated areas were identified based on images of static slip distribution. The largest asperity, located up-dip from the hypocenter with an area of 250 km × 110 km extending to the trench on the fault, had a maximum slip of about 54 m. The other asperities with smaller slip down-dip from the hypocenter were centered on the north and south of the hypocenter, respectively. The preferred average rupture expansion velocity was 1.2 km/s within 130 km from the hypocenter and up to 2.3 km/s over other areas on the fault. Thus, the region near the vicinity of the hypocenter with lower rupture velocity had higher slip amplitude, strongly suggesting brittle failure on a high friction fault. Based on ASTF results, our proposed method offers another way of directly detecting the kinematic source parameters of earthquakes.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, ,