Article ID Journal Published Year Pages File Type
6444986 Journal of Structural Geology 2013 13 Pages PDF
Abstract
Sheath folds are highly non-cylindrical folds occurring in a variety of geological settings, and have been studied using different approaches. With the present work, we provide a quantitative analysis of the generation and development of sheath folds in a viscously layered system in simple shear conditions. The sheath folds develop from an initial non-cylindrical deflection located on the highly viscous layer. The analogue experiments investigated the influence of (1) variations in the viscosity ratio between the high viscosity layer and the matrix (ηhvl/ηm), (2) variations in the ratio between the amplitude of the initial deflection and the thickness of the high viscosity layer (Af/Thvl), and (3) progressive simple shear (γ). The results show that increases in ηhvl/ηm will produce progressively less elongated sheath folds, while increases in Af/Thvl will result in more elongated sheath folds. We present regime diagrams with ηhvl/ηm and Af/Thvl for different shear strains illustrating under which conditions sheath folds form. In case the original deflection amplitude and layer thickness as well as γ can be retrieved for sheath folds in nature, then their geometry can be used to quantify the effective ηhvl/ηm.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, ,