Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6445072 | Journal of Structural Geology | 2013 | 18 Pages |
Abstract
Displacement ratio (Dr) is the ratio between salt thickness (Tv) and sub-salt normal fault displacement (D) (Dr = Tv/D), and it is typically used to predict the degree of geometric and kinematic linkage between sub- and supra-salt fault populations, and the overall structural style in salt-influenced extensional settings. However, we currently lack natural examples of how Dr and the underlying geological controls vary, and how these may control the three-dimensional geometry and evolution of salt-influenced normal fault systems. Furthermore, it is currently unknown if kinematic coherence in salt-influenced extensional settings can be maintained over relatively long length-scales (101-103 m) and for relatively long timeframes, and how this may impact the growth and geometry of large-throw (>500 m), salt-influenced normal fault systems. In this paper we use a 3600 km2, high-quality 3D seismic reflection dataset and borehole data from the Stavanger Fault System (SFS), Egersund Basin, eastern North Sea Basin to investigate; (i) how pre-rift salt thickness (Tv) and sub-salt fault throw (T) control the structural style and evolution of a basin-bounding, salt-influenced normal fault system; and (ii) the role salt plays in maintaining kinematic coherence in normal fault systems. We demonstrate that; (i) pre-rift salt distribution (Tv), specifically its presence in the proto-footwall (i.e., when Tv > 0), is the primary control on partitioning of faulting and (forced) folding along the fault system, and the style of linkage (i.e., hard- or soft-linkage) between sub- and supra-salt fault populations; and (ii) sub- and supra-salt fault populations represent brittle elements of a single, geometrically and kinematically coherent structure, the geometry and evolution of which is related to the ductile translation of strain on a scale (up to 8 km) and duration (c. 65 Myr) that believe is significantly greater and longer than previously documented.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geology
Authors
Matthew M. Lewis, Christopher A.-L. Jackson, Rob L. Gawthorpe,