Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6445140 | Journal of Structural Geology | 2012 | 23 Pages |
Abstract
Growing macroscale fold structures are one of the most dynamic and complex systems in geology, where during fold growth pore fluid pressure, fluid temperature, and fluid composition (PTX) conditions do not remain static but instead vary continually at all points within the deforming fold such that no two points within the fold will have the same deformation or fluid history. These PTX conditions in turn directly affect fluid storage and mobility as well as rock strength, which has direct feedback on the mechanical development of the fold. In this review, we first outline the research methodologies that have yielded significant insights, and review four examples of well-constrained fold-related fluid systems. We then discuss the fluid-related, fold-related, and mesoscopic deformation processes that are relevant to fold-related fluid systems. Finally, we close by presenting several conceptual models for fold-related fluid system structure, and highlighting key areas for future work.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geology
Authors
Mark A. Evans, Mark P. Fischer,