Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6445396 | Quaternary Science Reviews | 2016 | 10 Pages |
Abstract
The 'Lateglacial' period (â¼14.7-11.7 cal ka BP) eruptions of Mount St Helens and Glacier Peak in the Cascade Range deposited ash layers (tephras) within a short time span across much of western North America where they form event-stratigraphic marker layers or isochrons. They were deposited at a time which has long been of interest because it represents the transition between two fundamental states of the climate system: the late Pleistocene glacial world when ice sheets were widespread, and the modern interglacial Holocene world. This transition was marked by rapid changes in the distribution of plants, animals and humans on the landscape, and is characterised by short, rapid climate reversals in the warming trend. Yet despite the importance of understanding this period for many areas of palaeoclimatology, palaeobotany and archaeology it remains one of the most difficult for which to develop accurate chronologies because of fluctuations in atmospheric radiocarbon concentration. Hence, the occurrences of distinctive tephra isochrons are valuable for chronological control. Here, we report the first detection of the Mount St Helens set J and Glacier Peak tephras as closely-spaced 'cryptotephra' layers (not visible in stratigraphy to the naked eye) in three eastern seaboard lakes and dated to 13.74-13.45 cal ka BP. The presence of these tephras >4000 km from their sources affords an opportunity for continent-wide correlations by providing a high-precision chronological benchmark that is otherwise often lacking in North American studies of palaeoenvironmental change and deglaciation, megafaunal extinction and palaeoindian colonisation.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geology
Authors
Sean D.F. Pyne-O'Donnell, Les C. Cwynar, Britta J.L. Jensen, Jessie H. Vincent, Stephen C. Kuehn, Ray Spear, Duane G. Froese,