Article ID Journal Published Year Pages File Type
6446049 Quaternary Science Reviews 2016 16 Pages PDF
Abstract
The last deglaciation is the most recent interval of large-scale climate change that drove the Greenland ice sheet from continental shelf to within its present extent. Here, we use a database of 645 published 10Be ages from Greenland to document the spatial and temporal patterns of retreat of the Greenland ice sheet during the last deglaciation. Following initial retreat of its marine margins, most land-based deglaciation occurred in Greenland following the end of the Younger Dryas cold period (12.9-11.7 ka). However, deglaciation in east Greenland peaked significantly earlier (13.0-11.5 ka) than that in south Greenland (11.0-10 ka) or west Greenland (10.5-7.0 ka). The terrestrial deglaciation of east and south Greenland coincide with adjacent ocean warming. 14C ages and a recent ice-sheet model reconstruction do not capture this progression of terrestrial deglacial ages from east to west Greenland, showing deglaciation occurring later than observed in 10Be ages. This model-data misfit likely reflects the absence of realistic ice-ocean interactions. We suggest that oceanic changes may have played an important role in driving the spatial-temporal ice-retreat pattern evident in the 10Be data.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , , , , , , ,