Article ID Journal Published Year Pages File Type
6446660 Quaternary Science Reviews 2015 15 Pages PDF
Abstract
Biosiliceous productivity in Lake Chungará was influenced by shifts in allochthonous nutrient inputs related to variability in precipitation. Humid phases dated at approx. 12,400 to 10,000 and 9600 to 7400 cal yr BP coincide with periods of elevated productivity, whereas decreases in productivity were recorded during arid phases dated at approx. 10,000 to 9600 and 7400 to 3550 cal yr BP (Andean mid-Holocene Aridity Period). However, morphometry-related in-lake controls led to a lack of a linear response of productivity to precipitation variability. During the late Glacial to early Holocene, lowstands facilitated complete water column mixing, prompting episodic massive blooms of a large centric diatom, Cyclostephanos cf. andinus. Thus, moderate productivity could be maintained, regardless of aridity, by this phenomenon of morphometric eutrophy during the early history of the lake. The subsequent net increase in lake level introduced modifications in the area of the epilimnion sediments versus the total volume of the epilimnion, preventing complete overturn. Surpassing a certain depth threshold at approx. 8300 cal yr BP caused cessation of the morphometric eutrophy conditions associated with Cyclostephanos cf. andinus superblooms. After 7300 cal yr BP, the lake experienced a decrease in biosiliceous productivity and a change of state that involved a stronger dependence on precipitation variability, with a lesser contribution of diatoms to the total primary productivity. Our results show that the interpretation of lacustrine paleoproductivity records as paleoclimatic archives needs to take into account the effects of changes in the epilimnion sediment area to epilimnion volume ratio in association with lake ontogeny.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , , , , , , ,