Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6446917 | Journal of Applied Geophysics | 2016 | 7 Pages |
Abstract
This paper presents an evaluation of stress wave propagation through rock mass using a modified dominate frequency method. The effective velocity and transmission coefficient of stress wave propagation through rock mass with different joint stiffnesses are investigated. The results are validated by the theoretical method and the effects of incident frequency on the calculation accuracy are discussed. The results show that the modified dominate frequency method can be used to predict the effective velocity when the frequency of stress waves is within the low frequency range or high frequency range. However, the error cannot be ignored when the frequency is in the transitional frequency range. On the other hand, the modified dominate frequency method can be used to predict the transmission coefficient when the frequency of stress wave is within the low frequency range or optimal frequency range. However, the error cannot be ignored when the wave is within the high frequency range, which approaches 40% when the frequency is sufficiently large. Finally, the optimal stiffness-frequency relationship for the maximum calculation errors of effective velocity and the minimum calculation errors of transmission coefficient are proposed.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geophysics
Authors
L.F. Fan, Z.J. Wu,