Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6447021 | Journal of Applied Geophysics | 2016 | 14 Pages |
Abstract
A SEA methodology designed to be used in conjunction with the RTSM methodology is described. A procedure that optimizes the results of the SEA methodology is explained. A statistical RTSM calculation is adopted in order to obtain the final azimuth. Different relevant parameters of the soil and the array of emitters are varied in order to evaluate the SEA-RTSM methodology and its results. Numerically simulated and experimental data are used in this evaluation. The SEA-RTSM and the SO-RTSM results are compared between them. These results are also compared with an equivalent common-midpoint-RTSM (CMP-RTSM) calculation. Improved precision and accuracy are obtained from the SEA-RTSM methodology in the great majority of the examples. The height/width of the resulting azimuth distribution increases 102% in average when using this procedure instead of the usual SO-RTSM procedure, the average standard deviation diminishes 12%, and the average differences between the calculated and true azimuths reduce 34%. Minor improvements with respect to SO are obtained with the CMP-RTSM methodology. The proposed SEA-RTSM methodology and its results are especially relevant in civil engineering applications in which it is necessary to know the azimuth with precision and it is not possible to acquire data following 2D grids due to obstacles in the soil surface.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geophysics
Authors
DarÃo Bullo, Almendra Villela, Néstor Bonomo,