Article ID Journal Published Year Pages File Type
6447484 Physics of the Earth and Planetary Interiors 2016 12 Pages PDF
Abstract
We present a new high-resolution Pn anisotropic tomographic model of the uppermost mantle beneath China inferred from 52,061 Pn arrival-time data manually picked from seismograms recorded at provincial seismic stations in China and temporary stations in Tibet and the Tienshan orogenic belt. Significant features well correlated with surface geology are revealed and provide new insights into the deep dynamics beneath China. Prominent high Pn velocities are visible under the stable cratonic blocks (e.g., the Tarim, Junngar, and Sichuan basins, and the Ordos block), whereas remarkable low Pn velocities are observed in the tectonically active areas (e.g., Pamir, the Tienshan orogenic belt, central Tibet and the Qilian fold belt). A distinct N-S trending low Pn velocity zone around 86°E is revealed under the rift running from the Himalayan block through the Lhasa block to the Qiangtang block, which indicates the hot material upwelling due to the breaking-off of the subducting Indian slab. Two N-S trending low Pn velocity belts with an approximate N-S Pn fast direction along the faults around the Chuan-Dian diamond block suggest that these faults may serve as channels of mantle flow from Tibet. The fast Pn direction changes from N-S in the north across 27°N to E-W in the south, which may reflect different types of mantle deformation. The anisotropy in the south could be caused by the asthenospheric flow resulted from the eastward subduction of the Indian plate down to the mantle transition zone beneath the Burma arc. Across the Talas-Fergana fault in the Tienshan orogenic belt, an obvious difference in velocity and anisotropy is revealed. To the west, high Pn velocities and an arc-shaped fast Pn direction are observed, implying the Indo-Asian collision, whereas to the east low Pn velocities and a range-parallel Pn fast direction are imaged, reflecting the northward underthrusting of the Tarim lithosphere and the southward underthrusting of the Kazakh lithosphere. In most parts of eastern China, pronounced low Pn velocities and a complex anisotropy pattern are observed, implying the re-orientation of the olivine arrangement in the thin lithosphere due to the westward subduction of the Pacific plate.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geophysics
Authors
, ,