Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6447555 | Physics of the Earth and Planetary Interiors | 2013 | 8 Pages |
Abstract
Bergman et al. (2010) found experimental evidence for recrystallization and loss of solidification texture during annealing of directionally solidified hexagonal close-packed (hcp) Zn-rich Sn alloys. They suggested that this could support the model of Alboussiere et al. (2010) and Monnereau et al. (2010), in which the Earth's inner core translates convectively eastwards with enhanced solidification in the western hemisphere and melting in the eastern, because as inner core material translates eastwards and anneals it might lose texture, as inferred seismically. The 2010 study hypothesized that the alloys recrystallized rather than coarsened via diffusion due to the very low solubility of Sn in the Zn-rich phase. This study tests this hypothesis by annealing directionally solidified hcp Zn-rich Al alloys, in which there is greater solubility. Indeed, we find the Zn-rich Al alloys coarsen without recrystallization or fundamental change in texture. However, in contrast to the 2010 study the current study also did not find recrystallization in Zn-rich Sn alloys. This might tend to support models such as those by Cormier (2007) and Aubert et al. (2008) where long term mantle control over fluid flow near the base of the outer core might result in a weaker solidification texture in the eastern hemisphere. Although we do believe the results of the previous study are valid because they were repeatable at that time, it shows that there is something subtle that we cannot yet account for, and it remains unclear whether there is loss of solidification texture due to annealing of Earth's inner core.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geophysics
Authors
Yahya Al-Khatatbeh, Michael I. Bergman, Daniel J. Lewis, Zachary Mason, Laura Zhu, Sarita Rosenstock,