Article ID Journal Published Year Pages File Type
6447583 Physics of the Earth and Planetary Interiors 2014 56 Pages PDF
Abstract
This paper reviews the progress of the technology of ultrasonic interferometry from the early 1950s to the present day. During this period of more than 60 years, sound wave velocity measurements have been increased from at pressures less than 1 GPa and temperatures less than 800 K to conditions above 25 GPa and temperatures of 1800 K. This is complimentary to other direct methods to measure sound velocities (such as Brillouin and impulsive stimulated scattering) as well as indirect methods (e.g., resonance ultrasound spectroscopy, static or shock compression, inelastic X-ray scattering). Newly-developed pressure calibration methods and data analysis procedures using a finite strain approach are described and applied to data for the major mantle minerals. The implications for the composition of the Earth's mantle are discussed. The state-of-the-art ultrasonic experiments performed in conjunction with synchrotron X-radiation can provide simultaneous measurements of the elastic bulk and shear moduli and their pressure and temperature derivatives with direct determination of pressure. The current status and outlook/challenges for future experiments are summarized.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geophysics
Authors
, ,